Numerical Integration Formulas of Degree 3
for Product Regions and Cones

By A. H. Stroud

1. Introduction. Here we discuss approximate integration formulas of degree 3;
that is, formulas which are exact for polynomials of degree < 3, of the form

ff(xly "',xn) dxn ttt dxlzzbif(yﬂ, H'yyin)
R

for certain regions R in n-dimensional, real, Euclidean space E, .

If R is the Cartesian product of an r-dimensional and an s-dimensional region,
R =R, X R.,,7 + s = n, and if formulas of degree k involving p and ¢ points are
known for R, and R, , then Hammer and Wymore [4] have shown that a formula of
degree k& may be obtained for R which involves pg points. Similarly, if R is a cone
(or pyramid) with (n — 1)-dimensional base B, and if a formula of degree k involv-
ing p points is known for B, and further, if a formula of degree k of the form

/o. 2" g(z) de ~ 3 aig(v))

is known involving ¢ points, then Hammer, Marlowe and Stroud (2] have shown
that a formula of degree k can be obtained for R which involves pgq points.

For k = 3 we will show that these results can be improved as follows. If R =
R, X R, and formulas of degree 3 involving p and ¢ points are known for R, and B,
then a formula of degree 3 can be found for R involving p + ¢ + 1 points (and in
some cases this may be reduced to p + qgor p + ¢ — 1 points). If R is a cone and a
formula of degree 3 involving p points is known for its base B, then a formula of
degree 3 involving p + 3 points (in some cases p + 2 or p + 1 points) can be
found for R, whereas the method of [2] would involve 2p points. We also give a
p + 2 point formula of degree 3 for certain double cones, where p is the number.of
points in a formula for the base, and a 2n + 3 point formula of degree 3 for an
n-dimensional simplex.

2. Formulas for Product Regions. For convenience let us assume that the
centroid of R, is at the origin of coordinates in the subspace E, of E, for which
Zrpr = + -+ = Z,-= 0, and also that the centroid of R, is at the origin in the subspace
I, for which z; = .-+ = z, = 0. Then the centroid of R is at the origin in E, .
Also, for convenience in notation, we will write

Rr(xlal e xra') = [ xlal e xra’ dxr e dxl
R

r

with similar notations for R, and R. Then, for example, R,(1) is the r-dimensional
content or volume of R, and R(1) = R,(1)R,(1) is the n-dimensional volume of R.
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Suppose an approximate integration formula of degree 3 for R, is given by:
(1) vi = (va, ", Vir) a;, i=12--,p.
Also suppose that a formula of degree 3 for R, is given by:
(2) Vpri = (Vptirtr, *** 5 Vprim) @i, J=1,2,--- q

At first it is assumed no »; coincides with the origin in E, and no »,.; coincides with
the origin in E, . An integration formula for degree 3 for R is given by:

vw=(0---,00---,0) by = —R(1)
(3) vi= (va, "+, %r,0,---,0) b; = a.R,(1),
1=1,2.---,p
vori = (0, -+, 0, Vosjrpr, oo 0, Vptim) bp+i = @p+iR.(1),

j= 172""’(1'

To prove this statement, it suffices to prove that the formula is exact for the follow-
ing ten types of monomials: 1, %, , Zu; , Tr,Zry , Tr1Ts; , sy Loy y Tr TryTry 5 TriTryTsy  Tr Ty
Tsyy Loy Toglsy Wherery vy 13 =1,2 --- ;rands;, 8,8 =r+1,7+2,--- ,n:

The monomial 1. Since a; + - -+ + a, = R.(1) and apa + -+ + @prq = Ro(1)
we have

—R(1) + {1 + -+ + ap]R.(1) + [@p11 + -+ + Gp4]Ri(1)
= —R(1) + 2R, (1)R,(1) = R(1).
The type z,,2,,%,, . The formula gives for the integral of z,,z,,z., over R
[awirpirvie, + 0+ QplprVirg¥on,JR(1) = Ri(zr,2r,7.) R(1).
Thus the formula is exact because
R(z+ 2+ 2r,) = Ry(Zr,Zr,2r, ) Ri(1).

The proofs. for types &, , &i, , TrZry , TayTay , Ta,Tsys, are similar.
The type z.,2,,2,, . By the formula the integral of z,,z,,2,, over R iszerosinceeach
term of the sum is zero. However

R(xrxxrlel) = Rf(xnx":)R'(x'l) =0

because R,(x2,,) = 0. The proofs for the types z,,z,, and z,z,,z,, are similar.

If the formulas for R, and R, already include the origin, then the formula for R
will involve either p + ¢ or p + ¢ — 1 points according as the origin is included in
one or both of these formulas. In the former case, if v,,, in (2) is the origin, then
bo = —[aps2 + -+ + apiqR(1). In the latter case, if both » in (1) and v,y in
(2) are the origin, then

bo=R(1) — (a2 + -+ + ap]R(1) — [aps2 + - -+ + a4 JR(1).
Depending on the particular structure of the formulas (1) and (2) it may be
possible in special cases to eliminate the origin in the formula (3) for R. Suppose

in the formula (2) for R,, v,41 is the origin and a,,, is positive. Also suppose R,
is centrally symmetric. Then, as shown in [6], we may obtain 2r point formulas for



NUMERICAL INTEGRATION FORMULAS OF DEGREE 3 145

R, with -y, = v;,,ps = a;,72 = 1,2, ---, r. In addition to the assumptions

already made about R, , we may also assume R, (z,") = --- = R.(z,) andR,(z:z;) =

0, for 7 > j; then in order that (1) be a formula of degree 3 it is necessary and suffi-
2

cient that v, ---, » be orthogonal vectors with a; = Bo(z) where | »; | is the

20p.2
distance of v; from the origin. Since in the formula for R, X R, it is no longer neces-
sary that by + --- 4+ by, = R(1), a formula of degree 3 for R, X R, is given by
the 2r + ¢ — 1 points:

—v"+¥'=Vi=("t1)"'1vi":0)"':0) brys =biy
1=1,2---,r
vargj = (0, ++, 0, bargjrsr, ** , Voraim)  baryj = a2r4;R-(1),

j = 2) t g
where the only conditions that the b; and v;, ¢ = 1, 2, ---, r, must satisfy are
2(by+ --- +b,) = ag,,qu,(l) and », ---, » are any set of orthogonal vectors
for which | »;|? = R;f: f)

Of course if both R, and R, are centrally symmetric then B, X R, is also centrally
symmetric and the results of [6] may be applied directly to obtain 2n point formulas.
Some of the resulting formulas may also be obtained from the separate formulas
for R, and R, by a method somewhat similar to that described in the preceding
paragraph.

As an example of a specific formula we give a formula for the region C; X S.—,
1 £ r £ n — 2, where C, is the r-cube with vertices (&1, £1, -+, 1) and S,_,
is the (n — r)-simplex with vertices (—1, —1,---, =1), (1, 0,---,0),
0,1,---,0),---,(0,0,:---,1). Forr.= 1, C; X S, can be considered as a
prism (or in the terminology of Sommerville [5], p. 113, a prism of the first species)
with base S,_; ; for general r, C, X S, is a prism of species r. Since C. is centrally
symmetric the remarks made above apply. A formula of degree 3 is known for
S.—r using n — r + 2 points, [3], one of which is the origin, but the origin is taken
with a negative weight so that it is necessary to use n + r 4+ 2 points in the formula
for C, X S.—.. A particular formula is:

; the b; must all be positive.

”0=(0;01"'y0)0)07"'y0) b =

- _r_(—r+3)"
= 2'3,_,(1>[1 3 m]

—vp=n=(1,0,---,0,0,0, ---,0) by =by = -+ =

r—1
= Vry2 = V2 = (0,1, e ,0’00) e ’O) =b2'=br=?_3—S”-r(l)

—vy, =, =(0,0,---,1,0,0,---,0)

-2
V2ry1 = (0701 "'70’;{:—1'——.*-—3’
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—2 -2 b = ... = —
n—r+3 ‘n—r+3 e = Ontri1 =

2 o... 0)= (n— 71+ 3)28,..(1)
'n—r+3"" ’ 4n —r+ Dn — r + 2)

Vory2 =(0,0,"',0

Vntr+l = (0y0) "')010’0’ ’ﬁ)

3. Formulas for Cones. Suppose the centroid of the (n — 1)-dimensional base B
is at the origin in the subspace E,; of E, for which z; = 0 and that the vertex of B
isat (1,0, ---, 0) in E, . Suppose further a formula of degree 3 for B is given by

(4) V,-=(Vi2,yi3’-.-’yin) a;, 1:=1’2’...,p.

We assume at first that no »; coincides with the origin in E,_;. An integration
formula of degree 3 for R can be found of the form

Vi = (11,7”62,7”i3,"',’71'«‘n) bi=aai; 1= 1)27"')p
V‘D+1=(£i70707""0) bjs ]=1y293

To prove this we must first calculate the monomial integrals over R in terms of
those over B. These are

(3)

f 2’ P da, - d
R

X .
= f (1 = zy)"HPet oty dxlf %z dr, - dre.
o B

The equations which must be satisfied by (5) if it is to integrate each monomial are
given below (where the monomial from which the equation arises is indicated at
the left): -

B B 8 ] 8 _Bin — 1!
[z:7] bt + bk + bats + omlar + -0 + agl —WB(I),
g=0123.
[zfz] ayrflayvs + - + apvpd = LA 1o
1 44 D) P VP ('ﬂ+5+1)' 1/
g =012
! 1)!
EAEIER av'rlaming + -+ + apvpivyl = (: _(:';'_*_ )2)! B(z:z)),
B=01
1
[xixjxk] a‘Ya[alvliVlelk + -+ ap”pi”pj”pk] = m B(zr;zjxy)
where 7,j, k = 2, 3, - - - , n. Because we have assumed B(z;) = 0, the three equa-

tions [z,°z;] are of the form 0 = 0. From the equations [z.z;] and [zzx,] it imme-
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diately results that = 1/(n + 3). From equations [z.z;] and [z.z,z.] it follows that
(n + 3)° n+ 2
a=—, y=—.
(n + 2)? n+ 3
Since a; + - -+ 4+ a, = B(1) the equations that remain become
n+3° 1 B!(n — 1)!
; B(1) =2t = )
(n + 2)* (n + 3) n+8)!
8=0123.
In these equations we cannot take, say, b; = 0, which would in effect reduce by one
the number of points in the formula, because the resulting equations do not have a

real solution. It might be expected, however, that there would be many solutions
with all b; = 0. Here we give just one of the simplest solutions. If we choose

[3313] bxfxﬁ -+ bz&B + béE:B + B(1),

(4 3) _ 1

then the other values are

2n+1) — (n — 1) vV2(n + 1)(n+ 2) B(1)

B = Tn(n T D?
g = 20+ 2) +v20 F D +2)
1 RO
by = by'B(1) = 2 + 1) + (n — D2(n + 1(n + 2).B(1)

dn(n + 1)

2(n + 2) —2(n + 1)(n + 2)
(n + 2)(n + 3) '

These values of b/, by, & , & have been given in connection with numerical integra-
tion with respect to a weight function "' by Fishman [1] for n = 1(1)6 to 12D
and in [2] for n = 2(1)4 to 18S. These authors have used n where we use n — 1
and form = 2,j = 1, 2, their 1 — z; is our §;, their b; is our b;. It is proved in
[2] that the 2p points

(&8, (1 — Eva, (1 — E)va, -+, (1 — &)vi)  b)ar
i=1,2,---,p, 7= 1,2, are an integration formula of degree 3 for R.

If one of the »; in (fi), say » , is the origin in E,_; then it may be possible to
determine by, bs, &, & with b3 = 0 to give a formula which involves only p + 1
points vy, « -+, vp42 . The formula using » + 2 points when R is an n-simplex, [3],
can be derived in this manner; the formula for B, which is an (n — 1)-simplex,
involves n 4+ 1 points of which one is the origin in E._, . In any event, if » is the
origin, we may derive a formula of degree 3 for R involving p + 2 points v, -« -,
vp+3 Where

L=

_(n+ 3)°

(n + 2)
and the other values as before. Usually there will be other p + 2 point formulas
as well.

by = l@: + -+ + a,l
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Now we briefly discuss formulas for regions which are double cones; that is,
regions which are the union of two cones with vertices (1, 0,---, 0) and
(—1,0,---,0) and with a common base B of the type we have just considered.
By a combination of the methods of this section and the preceding it is easy to see
that from a formula (4) for B we may obtain the following formula involving
P + 2 points for the double cone R:

o O _2n+3) =12 ...
v, = (0, YViz, YVi3, ,'W‘m) b = Tﬁ_‘_—z)s a;, 1=12 P
—Vpt2 = Vpp1 = (5) 0) 0) ""0) bl""z = bP"‘l = ,;;?::-%28);B(1)

where

=

n+2 _ /w88
a¥3 ™M =4 ey rs

Since £ < 1 for all n, the points v,4; and »,» are always interior to R. In this
formula the origin is not required if it does not occur in (4) and b,4; and £ are
uniquely determined. If the origin does occur in (4), then in some cases it ean he
eliminated in the formula for R; if » is the origin, then b,,,, £ and b; will not be
uniquely determined and we may take ¢ arbitrary, which will then determine

borr = 2
M7 2aln + Dn + 2)

b= 280) = 2y - 22 4 40

Since b, is required to be positive, we eould, providing

(n +2)°
v+ 3 D1

B(1)

[az+"'+ap]<

or, in other words, providing

_(3n +8)
nin + 3)

choose b, = 0. In this case the formula for R would involve only the p + 1 points
v2, -+, Vp42 and byy; and £ would again be uniquely determined. In this paragraph
R has been a double cone of the first species with basé B; this method may be
repeated to give a formula for a double cone of species r. If we take a double cone
of species r with base S,—,,1 £ r £ n — 2, then this region has a formula of degree
3 which involves n + r 4+ 2 points. ‘

a > B(l)r

4. A Special Formula for Simplexes. We digress here from the methods of the
previous sections to give a special formula of degrec 3 for a simplex S, in E, . The
formula involves 2n + 3 points, n = 2, all but one of which are on the surface of
S, ; the formula involves the n + 1 vertices, the n + 1 centroids of the'(n — )-
dimensional faces, and the centroid of S, .
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To develop the formula it is most convenient to take S, to have vertices
0,0,---,0), (1,0,---,0),---, (0,0,---, 1). Then the monomial integrals
over S, are

s a;la;lag!
[ MM dr, - - dxy e R
S,

. Tt ataFal
The formula is then:

u=(1 1 1) _ _(+1)(n = 3)
0 n+1'n+1’ 'n+l (n + 2)(n + 3)

V1=(0,0,"',0) b1="‘=bn+l=

— P = 3
w=(1,0,---,0) (n+ D+ 2)(n + 3)

Sa(1)

Sa(1)

Vng1 = (0,0, "')]>

1 1 1
v,.+2=(;,1—l,"',;b) base = v = banye =
1 1 n’
s = (01, ) R CES R e R

11
Vopy2 = ("')'—\7 s ?0>
nn

where S.(1) = 1/(n!) is the volume of S,. Because of the symmetries of this
particular simplex, the proof that this is a formula of degree 3 can be established
by verifying that it is exact for the 7 monomials: 1, 2y, 2", Z122 , 2, 2:'%2 , 2122k .
Tor n = 1 this formula gives us Simpson’s formula, since for S;, a line segment,
the vertices coincide with the (n — 1)-faces; the weight for each end point of S; is
by + by = by + bs. Forn = 3, by = 0, and in this one case the centroid does not
occur in the formula; for n > 3, b is negative.

This formula will be useful when it is desired to integrate over a region by sub-
dividing the region into simplexes and then applying a formula of degree 3 to each
simplex. For a large number of subdivisions the total number of points used in
applyving this formula to each simplex will be less than the total number of points
used if the n + 2 point formula is applied to each simplex. For example, forn = 3
suppose we desire to integrate over an icosahedron (which has 20 triangular faces)
by subdividing it into 20 tetrahedra (each tetrahedron having as vertices the
vertices of a face plus the center of the icosahedron). Repeated use of the formula
given here would involve a total of 63 points whereas use of the 3-point formula
for each tetrahedron would involve 100 points.

5. Concluding Remarks. From the formulas we have discussed, formulas may
be obtained for regions which are linear transforms of the particular regions we have
counsidered. While these results add greatly to our knowledge of formulas of degree 3
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nothing is yet known concerning such formulas for regions which are less regular
than those considered here.

It seems certain, although no proof is known, that the n + 2 point formula of
degree 3 for S, and the 2n point formulas of degree 3 for C, involve the minimal
number of points for this degree. If this is true, then it is also likely that the n +
r 4+ 2 point formulas for both C. X S,_, and the double cone of species r with base
S.—- are also minimal. For fixed r these latter regions are the duals of each other
(see [3], p. 56) and thus have the same symmetries. This seems to indicate that the
minimal point formulas of degree 3 for a region are related to the group of sym-
metries of the region.

I am indebted to R. G. Hetherington for many discussious on this subject.
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